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...
Introduction

How can we use gravitational waves to look for new
matter?
Can we come up with alternative predictions for black
holes and/or GR to test against observations?
Need understanding of relativistic/nonlinear dynamics for
maximum return
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...
Three examples with bosonic fields

Black hole superradiance, boson stars, and modified gravity
with non-minially coupled scalar fields
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...
Gravitational wave probe of new particles

Search new part of parameter space: ultralight particles weakly
coupled to standard model

William East Strong field dynamics of bosonic fields



...
Superradiant instability: realizing the black hole bomb

Massive bosons (scalar and vector) can form bound
states, when frequency ω < mΩH grow exponentially in
time.
Search for new ultralight bosonic particles (axions, dark
massive “photons," etc.) with Compton wavelength
comparable to black hole radius (Arvanitaki et al.)
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...
Boson clouds emit gravitational waves

WE (2018)
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...
Boson clouds emit gravitational waves
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Can do targeted
searches–e.g. follow-up
black hole merger events,
or “blind" searches
Look for either resolved or
stochastic sources with
LIGO (Baryakthar+ 2017;
Zhu+ 2020; Brito+ 2017;
Tsukada+ 2019)
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...
Stochastic gravitational wave background

Can already place constraints on vector bosons with LIGO
O1+O2 (with moderate assumptions on black hole spin)

Tsukada, Brito, WE, & Siemonsen (in prep.)
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...
Testing the black hole paradigm

Caltech/MIT/LIGO Lab

Black hole seems to
fit. . .
But are there
horizonless objects
that can give similar
behavior?
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...
Boson stars

Are easy to evolve (c.f. gravastars, constant density stars,
etc.).
Can be ultracompact.
Can be rapidly spinning.
Can have stable photon orbits, ergospheres, etc.
But are they stable?
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...
Rotating boson star stability

Maybe not. . .

Palenzuela et al. (2017)

Also Sanchis-Gual et al. (2019): Rotating stars are unstable for
massive scalar bosons; Rotating massive vector stars are more
stable. (See J. Font’s talk)
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...
Boson stars

Use 3D full GR evolutions to study stability of complex scalar
boson stars with nonlinear interactions, �Φ = V ′(Φ) with V ′

nonlinear.
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Non-axisymmetric instability

Example of rotating axionic boson star
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...
Unstable and stable boson stars
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With nonlinear coupling, instability shuts off in relativistic
regime for some cases.
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...
Boson stars: outlook
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Class of rotating scalar boson stars stable on long
timescales
Can study mergers of these as point of comparison to
black holes.
Longer timescale instabilities (e.g. ergoregion, light ring,
etc.)?
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...
Modifying general relativity

S =
1

8π

∫
d4x
√−g(

1
2

R − 1
2

(∇φ)2 − V (φ) + α (φ) (∇φ)4 + β (φ)G

+ γ (φ) ∗RabcdRabcd + (RabcdRabcd )2/Λ6 + . . .)

Some modifications no longer have 2nd order equations of
motion
In that case one has no choice but to use order-reduction
(see M. Okounkova’s talk) or modify short wavelength
behavior (e.g. Cayuso & Lehner, 2020)
For those with 2nd order equations (Horndeski theories)
may be well-posed, but usually aren’t in commonly used
formulations (Papallo & Reall).
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...
Modification to generalized harmonic — Kovacs &
Reall (2020)

Introduce auxiliary metrics that determine gauge and constraint
propagation.

Equations of motion will still be strongly hyperbolic for
Horndeski theories with λ� L2.
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...
Non-perturbative dynamics of Horndeski

Can we get this to work strong-field/dynamical systems (e.g.
black hole mergers) and non-negligible coupling? (Work with
Justin Ripley)

Focus on Einstein-dilaton Gauss Bonnet

S =
1

8π

∫
d4x
√−g

(
1
2

R − 1
2

(∇φ)2 + λφG
)

Representative example of Horndeski, violates null
convergence condition
Can leverage experience regarding hyperbolicity in
spherically symmetric case (Ripley & Pretorius)

See also Helvi Witek’s talk in previous workshop for test field case.
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...
EDGB equations in modified harmonic

Evolution variables {gab, ∂tgab, φ, ∂tφ}(
Aab

ef Bab
Cef D

)
∂2

t

(
gef
φ

)
+

(
F (g)

ab
F (φ)

)
= 0

with gauge choices {Ha, g̃ab, ĝab}.
In modified harmonic formulation, principal matrix no
longer diagonal. In Horndeski, Cef and Bab non-zero, and
matrix involves second-derivatives.
Carry over experience with constraint damping, gauge
conditions, from generalized harmonic.
Black hole excision essential.
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...
Improved hyperbolicity

Harmonic vs. auxiliary metric harmonic
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Ã = 0.0, Â = 0.0

h/L = 1/128

h/L = 1/256

h/L = 1/512

h/L = 1/1024

h/L = 1/2048

0 1 2 3 4 5
t/L

0.0

0.5

1.0

1.5

2.0

||∂
0
g

h a
b(

t)
||/

||∂
0
g

h a
b(

t
=

0)
||

λ/L2 = 0.025
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Use of auxiliary metrics removes frequency dependence
growth.
WE & Ripley in prep.
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...
Black hole collisions
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Black holes scalarize while shrinking, and then collide.
WE & Ripley in prep.
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...
Black hole collisions: radiation
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Scalar and gravitational wave radiation in full EDGB.
WE & Ripley in prep.
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Binary black hole inspiral

To do:
Determine domain where theories are well-posed, and can
give predictions for GW observations (case-by-case).
Compare to order-reduction, other approximations that
may not capture secular/non-perturbative effects.
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...
Conclusion

Gravitational waves provide new probes of fundamental physics
that may be inaccessible to terrestrial experiments.

Place interesting constraints on new particles with current,
upcoming observations
Can use boson stars to test limits of horizonless compact
objects
Make non-perturbative predictions for modified gravity
theories (and determine where this is possible)

Understanding of detailed dynamics, targeted analyses
important.
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